- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Anti-inflammatory drug reverses periodontal damage via cellular cleanup, suggests study

A recent study reveals that dimethyl fumarate (DMF), a compound already approved for other inflammatory diseases, can prevent and alleviate periodontal tissue damage. The research demonstrates that DMF significantly shifts immune cell behavior, promoting anti-inflammatory macrophages and restoring mitochondrial health by enhancing mitophagy-a cellular process that removes damaged mitochondria. The drug achieves this through regulation of Tu translation elongation factor (TUFM), a protein critical to mitochondrial function. This breakthrough suggests a new therapeutic approach for periodontitis by targeting mitochondrial quality control and immune modulation rather than relying solely on traditional plaque-removal strategies.
Periodontitis is a chronic inflammatory condition and one of the leading causes of tooth loss in adults worldwide. Traditional treatments mainly focus on plaque removal and antimicrobial strategies but often fall short in halting disease progression. Recent advances indicate that immune imbalance-specifically the skewed polarization of macrophages toward a pro-inflammatory state-plays a critical role in disease severity. Additionally, mitochondrial dysfunction and oxidative stress have been shown to hinder the transition of macrophages from inflammatory (M1) to reparative (M2) types, aggravating tissue destruction. Due to these challenges, new research has focused on modulating mitochondrial health and immune responses to combat periodontal disease.
A research team from Wenzhou Medical University and collaborating institutions has published a study on April 17, 2025, in the International Journal of Oral Science, revealing a novel therapeutic mechanism for treating periodontitis. The team demonstrated that dimethyl fumarate (DMF) protects gum tissue by improving mitochondrial function and altering macrophage polarization. Their findings identify Tu translation elongation factor (TUFM)-mediated mitophagy as a key pathway regulated by DMF, offering a promising strategy to combat this prevalent oral health issue through immune and mitochondrial modulation.
The study employed both in vivo and in vitro models to explore the role of DMF in periodontal disease. Mice with ligature-induced periodontitis were treated with DMF, resulting in significantly reduced bone loss and inflammation. Immunofluorescence and micro-CT scans confirmed improved alveolar bone density and suppressed osteoclast formation. At the cellular level, DMF treatment in RAW 264.7 macrophages decreased M1 markers (iNOS, IL-1β) and elevated M2 markers (Arg1, CD206). Additionally, DMF reduced oxidative stress by restoring mitochondrial membrane potential, ATP levels, and reactive oxygen species (ROS) balance.
Central to this mechanism is TUFM-a mitochondrial elongation factor. DMF preserved TUFM levels by inhibiting its ubiquitin-proteasome-mediated degradation. This preservation promoted mitophagy, thereby maintaining mitochondrial homeostasis. When TUFM was silenced using siRNA, DMF lost its protective effects, confirming TUFM’s crucial role. Notably, DMF also outperformed a known mitochondrial antioxidant, MitoQ, in restoring cellular function and macrophage balance. Collectively, these findings highlight DMF as a potent immunometabolic regulator capable of reprogramming macrophage responses and safeguarding periodontal tissues.
"Dimethyl fumarate’s ability to fine-tune macrophage polarization through mitophagy is a game-changer in periodontal therapy," said Dr. Shengbin Huang, the study’s corresponding author. "By targeting the mitochondrial protein TUFM, we uncovered a molecular switch that controls the inflammatory response in gum tissue. These insights could redefine how we treat chronic inflammatory conditions beyond the oral cavity." The research opens the door for developing new localized therapies using DMF or similar compounds, especially in formulations designed to minimize systemic side effects.
This study paves the way for innovative treatments that go beyond traditional antimicrobial and mechanical approaches. By targeting TUFM-mediated mitophagy, DMF offers a method to restore mitochondrial health, reduce oxidative damage, and rebalance immune responses in periodontal tissue. Given DMF's existing approval for other diseases, its clinical translation could be accelerated. Future development may include hydrogel-based topical delivery systems to concentrate its effects in the gum region and minimize systemic exposure. These findings also open avenues for treating other inflammation-related diseases involving mitochondrial dysfunction and immune dysregulation.
Reference:
Chen, L., Hu, P., Hong, X. et al. Dimethyl fumarate modulates M1/M2 macrophage polarization to ameliorate periodontal destruction by increasing TUFM-mediated mitophagy. Int J Oral Sci 17, 32 (2025). https://doi.org/10.1038/s41368-025-00360-0
Dr Kamal Kant Kohli-MBBS, DTCD- a chest specialist with more than 30 years of practice and a flair for writing clinical articles, Dr Kamal Kant Kohli joined Medical Dialogues as a Chief Editor of Medical News. Besides writing articles, as an editor, he proofreads and verifies all the medical content published on Medical Dialogues including those coming from journals, studies,medical conferences,guidelines etc. Email: drkohli@medicaldialogues.in. Contact no. 011-43720751