- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Novel screening tool may predict complication risk after Laryngectomy: Study
Head and neck cancers are the seventh most common malignant tumors globally. The risk factors for all subtypes of head and neck cancers are well established, with tobacco and alcohol use, as well as certain subtypes of the human papillomavirus, being the most important. Regional differences in the incidence of different subtypes of head and neck cancers exist, which seem to be related to differences in the occurrence of preventable risk factors.
The larynx is anatomically subdivided into 3 different structures: supraglottic, glottic, and infraglottic. Total laryngectomy is the treatment of choice for locally advanced laryngeal cancer in which a surgical resection seems possible. Organ preservation approaches are available, yet they seem to be less effective in achieving disease-free survival. Although laryngeal cancers are ranked 18th of the most prevalent cancers worldwide, the morbidity of treatment is significant and surgical decision-making challenging, inherent to the often invasive nature and the involvement of surrounding anatomic structures.
The workload for head and neck surgeons is substantial and will increase due to the aging population of the western civilization. Therefore, with increasing cost pressure in the health care system, the reduction in postoperative complications is also essential importance. Common complications are pharyngocutaneous fistulas, postoperative bleeding, and insufficiency of the voice prosthesis.
The Clavien-Dindo classification (CDC) is a method to uniformly classify surgical complications in a way that is internationally recognized. It has been established as leading method for classifying postoperative complications in recent years.
Predicting postoperative complications is often based on established clinical tools and expert opinion. The most commonly used scoring systems generalize and neglect the variety of surgical disciplines, as well as the variety in surgeries within a discipline. Machine learning is a subfield of artificial intelligence and has been reintroduced in recent years as a method to make predictions based on the characteristics of individual patient groups in various clinical settings.
Koenen et al performed a study aimed at analyzing known comorbidities for complications after total laryngectomy by grading them according to the CDC.
Study included all patients (N = 148) who underwent a total laryngectomy after diagnosis of squamous cell carcinoma at institution. A logistic regression analysis of multiple complex risk factors was performed, and patients were grouped into severe postoperative complications (CDC 4) and less severe complications. Four different commonly used machine learning algorithms were trained on the dataset. The best model was selected to predict postoperative complications on the complete dataset.
The total laryngectomy is one of the most standardized major surgical procedures in otolaryngology. Several studies have proposed the Clavien-Dindo classification (CDC) as a solution to classifying postoperative complications into 5 grades from less severe to severe. Yet more data on classifying larger patient populations undergoing major otolaryngologic surgery according to the CDC are needed. Predicting postoperative complications in clinical practice is often subject to generalized clinical scoring systems with uncertain predictive abilities for otolaryngologic surgery. Machine learning offers methods to predict postoperative complications based on data obtained prior to surgery.
Univariate analysis showed that the most significant predictors for postoperative complications were the Charlson Comorbidity Index (CCI) and whether reconstruction was performed intraoperatively. A multivariate analysis showed that the CCI and reconstruction remained significant. The commonly used AdaBoost algorithm achieved the highest area under the curve with 0.77 with high positive and negative predictive values in subsequent analysis.
After years of using the CDC for postoperative complications in other surgical fields, it has emerged as a method to uniformly classify postoperative complications in an internationally accepted way. Of the different risk factors analyzed, the CCI and whether reconstruction was performed were significant. Every point of increase in the CCI led to a 1.9-fold increase in the risk of having a CDC IV or higher complication. As the CCI is already in routine use, it is an easy-to-implement scoring system. Authors find the CCI best suited because of an easy scoring system that is readily available on many online sources.
Adverse events in modern hospital services occur on a daily basis. The CDC is an opportunity to assess postoperative complications uniformly among surgical specialties worldwide. A uniform approach will lead to higher comparability, which can ultimately contribute to an improvement in the quality of care. The study showed that a reasonable estimate of postoperative complications can be made using machine learning algorithms. Bigger databases covering various surgeries are needed in order to train more elaborate models and integrate them into the clinical workflow.
Source: Koenen et al; Ear, Nose & Throat Journal;
Dr Ishan Kataria has done his MBBS from Medical College Bijapur and MS in Ophthalmology from Dr Vasant Rao Pawar Medical College, Nasik. Post completing MD, he pursuid Anterior Segment Fellowship from Sankara Eye Hospital and worked as a competent phaco and anterior segment consultant surgeon in a trust hospital in Bathinda for 2 years.He is currently pursuing Fellowship in Vitreo-Retina at Dr Sohan Singh Eye hospital Amritsar and is actively involved in various research activities under the guidance of the faculty.
Dr Kamal Kant Kohli-MBBS, DTCD- a chest specialist with more than 30 years of practice and a flair for writing clinical articles, Dr Kamal Kant Kohli joined Medical Dialogues as a Chief Editor of Medical News. Besides writing articles, as an editor, he proofreads and verifies all the medical content published on Medical Dialogues including those coming from journals, studies,medical conferences,guidelines etc. Email: drkohli@medicaldialogues.in. Contact no. 011-43720751