- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Potential new treatment for patients with pulmonary neuroendocrine tumors discovered
Netherlands: A recent study published in Cancer Cell has revealed a way to grow samples of different neuroendocrine tumour (NETs) types in the lab.
While generating their new model, the Organoid Group (Hubrecht Institute) and the Rare Cancers Genomics Team (IARC/WHO) discovered that some pulmonary NETs need the protein EGF to be able to grow. These types of tumors may therefore be treatable using inhibitors of the EGF receptor.
Neuroendocrine tumors
Neuroendocrine tumors (NETs) are relatively rare tumors that can be slow-growing. However, some NETs can be aggressive and hard to treat. It is not yet possible to predict which tumors will become aggressive. There are very few models to study NETs in the lab, which limits research into this type of tumor.
New disease model
Researchers from the Organoid Group (Hubrecht Institute) and the Rare Cancers Genomics Team (IARC/WHO) therefore set out to develop new models to study NETs. They derived cells from patients with NETs and were able to culture them into 3D structures called organoids.
These organoids mimic the behaviour of actual NETs and can therefore be used to study this type of tumor in the lab. The new model is the first organoid model of the disease.
Growth factor
While generating the organoids, the researchers found that some pulmonary NETs need a protein called the Epidermal Growth Factor (EGF) to grow.
"If we inhibit the receptor for EGF, some organoids die. Apparently, these organoids are dependent on EGF for their survival," says Talya Dayton, co-first author on the paper published in Cancer Cell.
"We need further research to confirm our findings, but this may indicate that patients with EGF-dependent NETs could be treated with inhibitors of the EGF receptor." Inhibitors of the EGF receptor are already a course of treatment for other types of tumors.
Aggressive tumors
Tumors are usually thought to be independent of growth factors. That some NETs turn out to be dependent on the growth factor EGF is therefore surprising.
"We think that their EGF-dependence might explain, in part, why some of these tumors grow slowly. We also think this might mean that one of the ways in which NETs can become aggressive is by becoming growth-factor independent. If they no longer need the growth factor, their growth may accelerate" Dayton explains.
Potential new therapy
The newly developed model for NETs provides a new way to study the disease in the lab. Dayton: "This allows us and other scientists to understand the biology of these tumors so we can hopefully find effective therapies." Although further research is needed, the model already points to a new route of treatment for patients with pulmonary NETs.
Reference:
Talya L. Dayton, Nicolas Alcala, Laura Moonen, Lisanne den Hartigh, Veerle Geurts, Lise Mangiante, Lisa Lap, Antonella F.M. Dost, Joep Beumer, Sonja Levy, Rachel S. van Leeuwaarde, Wenzel M. Hackeng, Kris Samsom, Catherine Voegele, Alexandra Sexton-Oates, Harry Begthel, Jeroen Korving, Lisa Hillen, Lodewijk A.A. Brosens, Sylvie Lantuejoul, Sridevi Jaksani, Niels F.M. Kok, Koen J. Hartemink, Houke M. Klomp, Inne H.M. Borel Rinkes, Anne-Marie Dingemans, Gerlof D. Valk, Menno R. Vriens, Wieneke Buikhuisen, JosƩ van den Berg, Margot Tesselaar, Jules Derks, Ernst Jan Speel, Matthieu Foll, Lynnette FernƔndez-Cuesta, Hans Clevers. Druggable growth dependencies and tumor evolution analysis in patient-derived organoids of neuroendocrine neoplasms from multiple body sites. Cancer Cell, 2023; 41 (12): 2083 DOI: 10.1016/j.ccell.2023.11.007
Dr Kamal Kant Kohli-MBBS, DTCD- a chest specialist with more than 30 years of practice and a flair for writing clinical articles, Dr Kamal Kant Kohli joined Medical Dialogues as a Chief Editor of Medical News. Besides writing articles, as an editor, he proofreads and verifies all the medical content published on Medical Dialogues including those coming from journals, studies,medical conferences,guidelines etc. Email: drkohli@medicaldialogues.in. Contact no. 011-43720751