- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
SOX2: a key player in prostate cancer progression and treatment resistance: Study

Prostate cancer remains a global health challenge, ranking as the second most common malignancy among men. While early-stage disease can be effectively managed, advanced forms-particularly metastatic castration-resistant prostate cancer (mCRPC)-pose significant therapeutic hurdles. A growing body of evidence highlights the pivotal role of SOX transcription factors, with SOX2 emerging as a central driver in tumor growth, spread, and resistance to therapy.
SOX2 is intricately linked to the fate of cancer stem/progenitor cells, influencing processes such as cell proliferation, apoptosis resistance, and epithelial-mesenchymal transition (EMT), which fuel invasion and metastasis. Elevated SOX2 levels are frequently observed in aggressive tumors and are associated with poor prognosis. Its activity extends to shaping tumor lineage plasticity, enabling cancer cells to adapt and survive under therapeutic pressure. This adaptability often facilitates transformation into neuroendocrine prostate cancer (NEPC), an aggressive variant with limited treatment options.
At the molecular level, SOX2 operates within a complex regulatory network, interacting with key transcription factors, non-coding RNAs, and epigenetic modifications. It is also a critical node in multiple signaling pathways, including PI3K/AKT, Hedgehog, Wnt/β-catenin, and TGF-β, which collectively sustain cancer stem cell traits and drive disease progression. Importantly, SOX2’s regulation involves both upstream inducers such as BRN2, TRIB2, and NRP2, and downstream effectors including LSD1, H19, SPINK1, and ASCL1—each contributing to tumor aggressiveness and therapeutic resistance.
SOX2’s role in treatment resistance is particularly significant. It supports resistance to chemotherapy by inducing a reversible quiescent state and activating survival pathways, while also mediating resistance to nuclear hormone receptor signaling inhibitors through modulation of cell cycle regulators and glucocorticoid receptor expression. This makes SOX2 a critical obstacle in sustaining long-term therapeutic success in advanced prostate cancer.
The potential of targeting SOX2-directly or indirectly-offers a promising avenue for innovation. Strategies may include disrupting its protein-protein interactions, modulating upstream regulators or downstream pathways, and harnessing small-molecule inhibitors to selectively curb its tumor-promoting functions. However, given SOX2’s importance in normal tissue regeneration, therapeutic approaches must balance efficacy with safety to minimize adverse effects.
As research advances, understanding the multifaceted role of SOX2 could pave the way for more precise, effective, and durable treatments, offering hope for patients battling the most aggressive forms of prostate cancer.
Reference:
Guotu Du, Xiang Huang, Peng Su, Ying Yang, Shicheng Chen, Tianyu Huang, Neng Zhang, The role of SOX transcription factors in prostate cancer: Focusing on SOX2, Genes & Diseases, https://doi.org/10.1016/j.gendis.2025.101692.
Dr Kamal Kant Kohli-MBBS, DTCD- a chest specialist with more than 30 years of practice and a flair for writing clinical articles, Dr Kamal Kant Kohli joined Medical Dialogues as a Chief Editor of Medical News. Besides writing articles, as an editor, he proofreads and verifies all the medical content published on Medical Dialogues including those coming from journals, studies,medical conferences,guidelines etc. Email: drkohli@medicaldialogues.in. Contact no. 011-43720751