- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
Vitamin B3 may help treat fibrotic eye diseases and prevent vision loss
Researchers have found that Vitamin B3 may slow down fibrotic eye diseases and mitigate vision loss or blindness.
Nicotinamide, a form of vitamin B3, can inhibit aggressive cell transformations during wound healing and may be key to the development of therapies to treat fibrotic eye diseases that impair vision, according to a new Mount Sinai study published in Stem Cell Reports.
The findings apply to a condition in which cells in the retinal pigment epithelium, a layer that supports the retina, transform and develop the characteristics of more aggressive cells known as mesenchymal cells. The condition can be triggered by aging, diabetes, or injury to the eye. This causes development of fibrous membranes that resemble damaging cells found in retinal scar tissue, and can lead to retinal detachment.
The researchers found that nicotinamide not only inhibits these cell transformations, but can also reverse that cell transition and slow down the development of eye diseases that may lead to vision loss or blindness.
When applying nicotinamide as a therapy to human adult cells in vitro, the researchers found that the vitamin B derivative slowed down the aggressive cellular transformation and could promote the opposite transition, from mesenchymal to epithelial, helping to preserve the cell's original identity.
"This is the first study that shows how nicotinamide can inhibit invasive wound healing, but also reverse the development of membranes associated with scar tissue," said Timothy Blenkinsop, PhD, co-lead investigator of the study and Assistant Professor of Cell, Developmental and Regenerative Biology at the Icahn School of Medicine at Mount Sinai. "This discovery helps evolve our understanding of wound healing, as well as good inflammation versus bad inflammation. Good inflammation essentially nudges the system into a regenerative response, while bad inflammation can create harmful scar tissue formation. This is an exciting time to understand how this compound can be used to treat and reverse not only fibrotic diseases of the retina but other diseases too."
The researchers also identified epigenetic and molecular changes that occur during the cell transition process. Nicotinamide therapy resulted in widespread changes in the DNA sequence of the cells, eliciting changes in more than 40,000 identified chromosomal regions. The scientists observed that nicotinamide was associated with massive reorganization of the cell patterns, especially with inducing enhancer elements that lead the cell stage change in the retina. It activated regulatory elements in cells, including transcriptional factors that are prominent regulators of cell transformation.
Sally Temple, PhD, co-lead investigator of the study and Scientific Director at Neural Stem Cell Institute, said the study paves the way to develop new forms of treatment for patients. "Now we know the epigenetic landscape that is associated with the changes activated by nicotinamide, which gives deeper insights into cell transformations and provides an opportunity to explore a pathway for new therapeutic approaches for any condition or complication associated with wound healing."
https://www.cell.com/stem-cell-reports/fulltext/S2213-6711(20)30099-0
Hina Zahid Joined Medical Dialogue in 2017 with a passion to work as a Reporter. She coordinates with various national and international journals and association and covers all the stories related to Medical guidelines, Medical Journals, rare medical surgeries as well as all the updates in the medical field. Email:Â editorial@medicaldialogues.in. Contact no. 011-43720751
Dr Kamal Kant Kohli-MBBS, DTCD- a chest specialist with more than 30 years of practice and a flair for writing clinical articles, Dr Kamal Kant Kohli joined Medical Dialogues as a Chief Editor of Medical News. Besides writing articles, as an editor, he proofreads and verifies all the medical content published on Medical Dialogues including those coming from journals, studies,medical conferences,guidelines etc. Email: drkohli@medicaldialogues.in. Contact no. 011-43720751