- Home
- Medical news & Guidelines
- Anesthesiology
- Cardiology and CTVS
- Critical Care
- Dentistry
- Dermatology
- Diabetes and Endocrinology
- ENT
- Gastroenterology
- Medicine
- Nephrology
- Neurology
- Obstretics-Gynaecology
- Oncology
- Ophthalmology
- Orthopaedics
- Pediatrics-Neonatology
- Psychiatry
- Pulmonology
- Radiology
- Surgery
- Urology
- Laboratory Medicine
- Diet
- Nursing
- Paramedical
- Physiotherapy
- Health news
- Fact Check
- Bone Health Fact Check
- Brain Health Fact Check
- Cancer Related Fact Check
- Child Care Fact Check
- Dental and oral health fact check
- Diabetes and metabolic health fact check
- Diet and Nutrition Fact Check
- Eye and ENT Care Fact Check
- Fitness fact check
- Gut health fact check
- Heart health fact check
- Kidney health fact check
- Medical education fact check
- Men's health fact check
- Respiratory fact check
- Skin and hair care fact check
- Vaccine and Immunization fact check
- Women's health fact check
- AYUSH
- State News
- Andaman and Nicobar Islands
- Andhra Pradesh
- Arunachal Pradesh
- Assam
- Bihar
- Chandigarh
- Chattisgarh
- Dadra and Nagar Haveli
- Daman and Diu
- Delhi
- Goa
- Gujarat
- Haryana
- Himachal Pradesh
- Jammu & Kashmir
- Jharkhand
- Karnataka
- Kerala
- Ladakh
- Lakshadweep
- Madhya Pradesh
- Maharashtra
- Manipur
- Meghalaya
- Mizoram
- Nagaland
- Odisha
- Puducherry
- Punjab
- Rajasthan
- Sikkim
- Tamil Nadu
- Telangana
- Tripura
- Uttar Pradesh
- Uttrakhand
- West Bengal
- Medical Education
- Industry
AI software may equal radiologists at spotting tuberculosis from chest X-rays, study finds
Denmark: Artificial intelligence (AI) software is at least as good at detecting tuberculosis (TB) as a trained radiologist, and a simple mobile phone photograph is sufficient for analysis, a recent study has shown, implying that AI software can accurately detect TB from chest X-rays.
The study was presented at the 2023 European Congress of Clinical Microbiology & Infectious Diseases (ECCMID) in Copenhagen, Denmark, (15-18 April).
Tuberculosis (TB) is a major cause of death and disease worldwide. It causes 1.6 million deaths a year, making it is the 13th leading cause of death globally and the second biggest infectious killer, after COVID-19.
In low-resource settings, chest X-rays play an important role in the diagnosis of patients unable to produce good quality sputum samples for microbiological analysis. Computer-aided detection (using software to analyse X-rays for abnormalities) could assist in diagnosis in areas lacking radiologists.
However, there is a lack of good quality studies assessing its diagnostic accuracy, as highlighted recently by the World Health Organisation.
To find out more, Dr Frauke Rudolf, of the Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark, and colleagues compared the performance of artifical intelligence (AI) software (qXR, Qure.ai, Mumbay, India) in assessing chest X-rays with that of two Ethiopian radiologists with different levels of experience.
To improve applicability in low resource settings, the AI was given mobile phone photographs of analogue (non-digital) CXRs.
Chest X-rays from 498 patients were analysed retrospectively. Fifty-seven (11%) of these patients had been diagnosed with TB, 41 clinically and 16 through PCR tests (Xpert MTB/Rif).
The AI software was as good or better than a trained radiologist at identifying the PCR-confirmed cases. It correctly identified 75% of all PCR-confirmed cases (sensitivity of 75%) and 85.7% of non-TB cases (specificity of 85.7%).
The less experienced radiologist’s assessments had a sensitivity of 62.5% (they correctly picked up 62.5% of the PCR-confirmed cases) and a specificity of 91.7% (they correctly identified 91.7% of those who didn’t have TB).
The experienced radiologist’s assessments were 75% sensitive and 82.0% specific.
The agreement in results between the radiologists was moderate, as was the agreement between the radiologists combined and the software.
Dr Rudolf says: “With an estimated 3 million undiagnosed patients in 2021, there is an urgent need to develop novel strategies and technologies aimed at improving TB detection in low-resource, high-incidence settings.
“We’ve shown that AI software is at least as good at detecting TB as a trained radiologist and that a simple mobile phone photograph is sufficient for analysis.
“In low resource areas with a high incidence of TB but a shortage of radiologists, chest X-rays could be photographed with a mobile phone and the image sent be analysed remotely by the AI.
“This would allow more chest X-rays to be read properly and, crucially, allow more cases of TB to be diagnosed.”
Reference:
AI software at least as good as radiologists at detecting TB from chest X-rays, European Society of Clinical Microbiology & Infectious Diseases, Meeting, ECCMID 2023.
Dr Kamal Kant Kohli-MBBS, DTCD- a chest specialist with more than 30 years of practice and a flair for writing clinical articles, Dr Kamal Kant Kohli joined Medical Dialogues as a Chief Editor of Medical News. Besides writing articles, as an editor, he proofreads and verifies all the medical content published on Medical Dialogues including those coming from journals, studies,medical conferences,guidelines etc. Email: drkohli@medicaldialogues.in. Contact no. 011-43720751