Machine Learning may predict Treatment outcomes in early childhood caries, suggests study

Published On 2025-04-28 18:00 GMT   |   Update On 2025-04-28 18:00 GMT
Advertisement

Researchers have found in a new study that Machine learning shows promise in predicting treatment outcomes in early childhood caries. Further Key identified predictors can help guide targeted management strategies.

Early childhood caries (ECC) is a major oral health problem among preschool children that can significantly influence children’s quality of life. Machine learning can accurately predict the treatment outcome but its use in ECC management is limited. The aim of this study is to explore the application of machine learning in predicting the treatment outcome of ECC. This study was a secondary analysis of a recently published clinical trial that recruited 1,070 children aged 3- to 4-year-old with ECC. Machine learning algorithms including Naive Bayes, logistic regression, decision tree, random forest, support vector machine, and extreme gradient boosting were adopted to predict the caries-arresting outcome of ECC at 30-month follow-up after receiving fluoride and silver therapy. Candidate predictors included clinical parameters (caries experience and oral hygiene status), oral health-related behaviours (toothbrushing habits, feeding history and snacking preference) and socioeconomic backgrounds of the children. Model performance was evaluated using discrimination and calibration metrics including accuracy, recall, precision, F1 score, area under the receiver operating characteristic curve (AUROC) and Brier score. Shapley additive explanations were deployed to identify the important predictors. Results: All machine learning models showed good performance in predicting the treatment outcome of ECC. The accuracy, recall, precision, F1 score, AUROC, and Brier score of the six models ranged from 0.674 to 0.740, 0.731 to 0.809, 0.762 to 0.802, 0.741 to 0.804, 0.771 to 0.859, and 0.134 to 0.227, respectively. The important predictors of the caries-arresting outcome were the surface and tooth location of the carious lesions, newly developed caries during follow-ups, baseline caries experience, whether the children had assisted toothbrushing and oral hygiene status.

Machine learning can provide promising predictions of the treatment outcome of ECC. The identified key predictors would be particularly informative for targeted management of ECC.


Reference:

Wu, Y., Jia, M., Fang, Y. et al. Use machine learning to predict treatment outcome of early childhood caries. BMC Oral Health 25, 389 (2025). https://doi.org/10.1186/s12903-025-05768-y


Keywords:

Machine, Learning, predict, Treatment, outcomes, early, childhood, caries, suggests, study, Wu, Y., Jia, M., Fang, Y, Machine learning, Early childhood caries, Predictor, Support vector machine, Extreme gradient boosting, SHAP



Tags:    
Article Source : BMC Oral Health

Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.

NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.

Our comments section is governed by our Comments Policy . By posting comments at Medical Dialogues you automatically agree with our Comments Policy , Terms And Conditions and Privacy Policy .

Similar News