A machine learning model to predict immunotherapy response in cancer patients

Written By :  Isra Zaman
Medically Reviewed By :  Dr. Kamal Kant Kohli
Published On 2022-07-12 04:15 GMT   |   Update On 2022-07-12 04:15 GMT

The recently developed immune checkpoint inhibitor has considerably improved the survival rate of patients with cancer. However, the problem with cancer immunotherapy is that only approximately 30% of cancer patients receive benefits from its therapeutic effect, and the current diagnostic techniques do not accurately predict the patient's response to the treatment.

Under this circumstance, the research team led by Professor Sanguk Kim (Department of Life Sciences) at POSTECH is gaining attention as they have improved the accuracy of predicting patient response to immune checkpoint inhibitors (ICIs) by using network-based machine learning. The research team discovered new network-based biomarkers by analyzing the clinical results of more than 700 patients with three different cancers (melanoma, gastric cancer, and bladder cancer) and the transcriptome data of the patients' cancer tissues.

By utilizing the network-based biomarkers, the team successfully developed artificial intelligence that could predict the response to anticancer treatment. The team further proved that the treatment response prediction based on the newly discovered biomarkers was superior to that based on conventional anticancer treatment biomarkers including immunotherapy targets and tumor microenvironment markers.

This study helps detect patients who will respond to immunotherapy in advance and establish treatment plans, resulting in customized precision medicine with more patients to benefit from cancer treatments. Supported by the POSTECH Medical Device Innovation Center, the Graduate School of Artificial Intelligence, and Immuno Biome Inc, this study was recently published in Nature Communications, an international peer-reviewed journal.

Reference: Kong, J., Ha, D., Lee, J. et al. Network-based machine learning approach to predict immunotherapy response in cancer patients. Nat Commun 13, 3703 (2022). https://doi.org/10.1038/s41467-022-31535-6

Full View
Tags:    
Article Source : Nature Communications

Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.

NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.

Our comments section is governed by our Comments Policy . By posting comments at Medical Dialogues you automatically agree with our Comments Policy , Terms And Conditions and Privacy Policy .

Similar News