A new and easy rapid test to easily diagnose Cancers and heart disease
Imperial researchers have built a new easy-to-use test that could diagnose non-infectious diseases like heart attacks and cancers more quickly.
The new test works by detecting molecular signals in the body called biomarkers, which are already used in things like COVID-19 testing where the presence of SARS-CoV-2 genes indicates COVID-19. There are also biomarkers for non-infectious diseases: for example, prostate-specific antigen (PSA) in the blood can sometimes act as a biomarker to indicate the presence of prostate cancer.
The new test, called CrisprZyme, has been developed by a team of researchers led by Imperial College London, MIT, and Max Delbrück Center for Molecular Medicine in Berlin.
CrisprZyme builds on CRISPR diagnostic tests, which use RNA to detect biomarkers in biological fluids like blood or urine. In their current form, these tests detect RNA and then amplify this RNA by creating many copies so that the signal is easier to read.
However, these amplifying technologies must be temperature controlled to work, which requires expensive equipment. Additionally, although they tell medics whether an infectious disease is present, they cannot provide information about how much biomarker is present, which is important for monitoring non-infectious diseases like heart diseases and cancer.
CrisprZyme improves this technology by replacing the amplification process with colorimetric analysis – a method that determines the amount of biomarker present without the need for amplification. This eliminates the need for temperature control and additional steps, and can also reveal how much of a biomarker is present in a sample.
To eliminate the amplification step, the researchers used nanoenzymes – tiny synthetic materials that behave like enzymes. Their enzymatic-like activity increases the signal of the test making the colorimetric analysis easier to read.
Ref:
Dr. Marta Broto et. al, 'Nanozyme-catalysed CRISPR assay for preamplification-free detection of non-coding RNAs, Nature Nanotechnology, 4-Aug-2022, DOI: 10.1038/s41565-022-01179-0
Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.
NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.