Researchers provide insights on how to overcome resistance in cancer therapy

Published On 2022-11-07 06:20 GMT   |   Update On 2022-12-07 10:06 GMT

The latest developmental drugs, particularly for the use in oncology, rely on the targeted degradation of harmful pathogenic proteins. In a recent study, researchers at CeMM, the Research Center for Molecular Medicine of the Austrian Academy of Sciences, and the University of Dundee (UK) identify potential resistance mechanisms and provide insights on how to overcome them.Traditional...

Login or Register to read the full article

The latest developmental drugs, particularly for the use in oncology, rely on the targeted degradation of harmful pathogenic proteins. In a recent study, researchers at CeMM, the Research Center for Molecular Medicine of the Austrian Academy of Sciences, and the University of Dundee (UK) identify potential resistance mechanisms and provide insights on how to overcome them.

Traditional targeted cancer therapies mainly rely on drugs that bind pathogenic proteins and inhibit their function. The latest development of drugs has brought forward chemical molecules known as degraders, which force the targeted degradation of disease relevant proteins. This method of targeted protein degradation is not only more efficient, but also better at overcoming potential drug resistance. For many years, CeMM Principal Investigator Georg Winter and his research group have been working on further developing this paradigm. Small-molecule degraders work like a glue by recruiting the defective, disease-causing protein to effectors of the cellular waste disposal systems, which are known as E3 ubiquitin ligases. This binding in turn kick-starts the degradation process of the defective protein. Alexander Hanzl, first author and PhD student in the Winter Lab at CeMM, conducted a study to investigate which resistances can arise during the degradation process. He explains, "One challenge with degraders is that they have to bind two sites at once – both the defective protein and a protein of our cell's own degradation system, the E3 ligase. It is therefore all the more important to understand the process of binding and ubiquitination in functional detail. Only then can future degraders be modeled in the best possible way".

Reference:

Hanzl, A., Casement, R., Imrichova, H. et al. Functional E3 ligase hotspots and resistance mechanisms to small-molecule degraders. Nat Chem Biol (2022). https://doi.org/10.1038/s41589-022-01177-2

Tags:    
Article Source : Nature Chemical Biology

Disclaimer: This site is primarily intended for healthcare professionals. Any content/information on this website does not replace the advice of medical and/or health professionals and should not be construed as medical/diagnostic advice/endorsement/treatment or prescription. Use of this site is subject to our terms of use, privacy policy, advertisement policy. © 2024 Minerva Medical Treatment Pvt Ltd

Our comments section is governed by our Comments Policy . By posting comments at Medical Dialogues you automatically agree with our Comments Policy , Terms And Conditions and Privacy Policy .

Similar News