Scientists find new ways in which reproduction permanently alters females' bones

Written By :  Isra Zaman
Medically Reviewed By :  Dr. Kamal Kant Kohli
Published On 2022-11-02 03:45 GMT   |   Update On 2022-11-02 03:45 GMT

A rceent discovery sheds new light on how giving birth can permanently change the body.

"A bone is not a static and dead portion of the skeleton," notes NYU anthropologist Shara Bailey, one of the study's authors. "It continuously adjusts and responds to physiological processes."explains Paola Cerrito, who led the research as a doctoral student in NYU's Department of Anthropology and College of Dentistry.

"Our findings provide additional evidence of the profound impact that reproduction has on the female organism, further demonstrating that the skeleton is not a static organ, but a dynamic one that changes with life events,"

Specifically, the researchers found that calcium, magnesium, and phosphorus concentrations are lower in females who have experienced reproduction. These changes are linked to giving birth itself and to lactation.

However, they caution that while other clinical studies show calcium and phosphorus are necessary for optimal bone strength, the new findings do not address overall health implications for either primates or humans. Rather, they say, the work illuminates the dynamic nature of our bones.

The other authors of the study, which appears in the journal PLOS ONE, are Timothy Bromage, a professor in NYU College of Dentistry, Bin Hu, an adjunct professor at NYU College of Dentistry, Justin Goldstein, a doctoral candidate at Texas State University, and Rachel Kalisher, a doctoral candidate at Brown University.

It's been long-established that menopause can have an effect on females' bones. Less clear is how preceding life-cycle events, such as reproduction, can influence skeletal composition. To address this, the researchers studied the primary lamellar bone-the main type of bone in a mature skeleton. This aspect of the skeleton is an ideal part of the body to examine because it changes over time and leaves biological markers of these changes, allowing scientists to monitor alterations during the life span.

In the PLOS ONE study, the researchers examined the growth rate of lamellar bone in the femora, or thigh bones, of both female and male primates who had lived at the Sabana Seca Field Station in Puerto Rico and died of natural causes. Veterinarians at the field station had monitored and recorded information on these primates' health and reproductive history, allowing the researchers to match bone-composition changes to life events with notable precision.

Cerrito and her colleagues used electron microscopy and energy-dispersive X-ray analysis-commonly deployed methods to gauge the chemical composition of tissue samples-to calculate changes in concentrations of calcium, phosphorus, oxygen, magnesium, and sodium in the primates' bones.

Their results showed different concentrations of some of these elements in females who gave birth compared males as well as females who did not give birth. Specifically, in females who gave birth, calcium and phosphorus were lower in bone formed during reproductive events. Moreover, there was a significant decline in magnesium concentration during these primates' breastfeeding of infants.

"Our research shows that even before the cessation of fertility the skeleton responds dynamically to changes in reproductive status," says Cerrito, now a research fellow at ETH Zurich. "Moreover, these findings reaffirm the significant impact giving birth has on a female organism-quite simply, evidence of reproduction is 'written in the bones' for life."

Reference:

Paola Cerrito et al,PLoS ONE, DOI 10.1371/journal.pone.0276866

Full View
Tags:    
Article Source : PLoS ONE

Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.

NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.

Our comments section is governed by our Comments Policy . By posting comments at Medical Dialogues you automatically agree with our Comments Policy , Terms And Conditions and Privacy Policy .

Similar News