Researchers Create Artificial Foam Heart
Advertisement
NEW YORK: A team from Cornell University has developed an artificial heart with a new lightweight and stretchable foam that has potential for use in prosthetic body parts, artificial organs and soft robotics.
The foam is unique because it can be formed and has connected pores that allow fluids to be pumped through it.
The polymer foam starts as a liquid that can be poured into a mould to create shapes, and because of the pathways for fluids, when air or liquid is pumped through it, the material moves and can change its length by 300 percent.
While applications for use inside the body require federal approval and testing, Cornell researchers are close to making prosthetic body parts with the so-called Â"elastomer foamÂ".
"We are currently pretty far along for making a prosthetic hand this way," said Rob Shepherd, assistant professor of mechanical and aerospace engineering.
The team demonstrated a pump they made into a heart, mimicking both shape and function.
The researchers used carbon fibre and silicone on the outside to fashion a structure that expands at different rates on the surface - to make a spherical shape into an egg shape, for example, that would hold its form when inflated.
"We would like to make the foam actuators faster and with higher strength so we can apply more force. We are also focusing on biocompatibility," Mr Shepherd added in a paper which appeared in the journal Advanced Materials.
The foam is unique because it can be formed and has connected pores that allow fluids to be pumped through it.
The polymer foam starts as a liquid that can be poured into a mould to create shapes, and because of the pathways for fluids, when air or liquid is pumped through it, the material moves and can change its length by 300 percent.
While applications for use inside the body require federal approval and testing, Cornell researchers are close to making prosthetic body parts with the so-called Â"elastomer foamÂ".
"We are currently pretty far along for making a prosthetic hand this way," said Rob Shepherd, assistant professor of mechanical and aerospace engineering.
The team demonstrated a pump they made into a heart, mimicking both shape and function.
The researchers used carbon fibre and silicone on the outside to fashion a structure that expands at different rates on the surface - to make a spherical shape into an egg shape, for example, that would hold its form when inflated.
"We would like to make the foam actuators faster and with higher strength so we can apply more force. We are also focusing on biocompatibility," Mr Shepherd added in a paper which appeared in the journal Advanced Materials.
Our comments section is governed by our Comments Policy . By posting comments at Medical Dialogues you automatically agree with our Comments Policy , Terms And Conditions and Privacy Policy .
Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.
NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.