US scientists create insulin-producing pancreatic cells from human skin cells
Advertisement
New York: Scientists at a US university have successfully converted human skin cells into fully-functional pancreatic cells.
The new cells produced insulin in response to changes in glucose levels, and, when transplanted into mice, the cells protected the animals from developing diabetes in a mouse model of the disease.
The study, conducted by scientists at the Gladstone Institutes and the University of California, San Francisco (UCSF), also presents significant advancements in cellular reprogramming technology, which will allow scientists to efficiently scale up pancreatic cell production and manufacture trillions of the target cells in a step-wise, controlled manner, a Gladstone Institutes statement said.
"Our results demonstrate for the first time that human adult skin cells can be used to efficiently and rapidly generate functional pancreatic cells that behave similar to human beta cells," said Matthias Hebrok, director of the Diabetes Centre at UCSF and a co-author of the study.
"This finding opens up the opportunity for the analysis of patient-specific pancreatic beta cell properties and the optimisation of cell therapy approaches," Hebrok added.
The new cells produced insulin in response to changes in glucose levels, and, when transplanted into mice, the cells protected the animals from developing diabetes in a mouse model of the disease.
The study, conducted by scientists at the Gladstone Institutes and the University of California, San Francisco (UCSF), also presents significant advancements in cellular reprogramming technology, which will allow scientists to efficiently scale up pancreatic cell production and manufacture trillions of the target cells in a step-wise, controlled manner, a Gladstone Institutes statement said.
"Our results demonstrate for the first time that human adult skin cells can be used to efficiently and rapidly generate functional pancreatic cells that behave similar to human beta cells," said Matthias Hebrok, director of the Diabetes Centre at UCSF and a co-author of the study.
"This finding opens up the opportunity for the analysis of patient-specific pancreatic beta cell properties and the optimisation of cell therapy approaches," Hebrok added.
Our comments section is governed by our Comments Policy . By posting comments at Medical Dialogues you automatically agree with our Comments Policy , Terms And Conditions and Privacy Policy .
Disclaimer: This website is primarily for healthcare professionals. The content here does not replace medical advice and should not be used as medical, diagnostic, endorsement, treatment, or prescription advice. Medical science evolves rapidly, and we strive to keep our information current. If you find any discrepancies, please contact us at corrections@medicaldialogues.in. Read our Correction Policy here. Nothing here should be used as a substitute for medical advice, diagnosis, or treatment. We do not endorse any healthcare advice that contradicts a physician's guidance. Use of this site is subject to our Terms of Use, Privacy Policy, and Advertisement Policy. For more details, read our Full Disclaimer here.
NOTE: Join us in combating medical misinformation. If you encounter a questionable health, medical, or medical education claim, email us at factcheck@medicaldialogues.in for evaluation.